An Almost Linear Time Approximation Algorithm for the Permanen of a Random (0-1) Matrix
نویسندگان
چکیده
We present a simple randomized algorithm for approximating permanents. The algorithm with inputs A, ǫ > 0 produces an output XA with (1−ǫ)per(A) ≤ XA ≤ (1+ǫ)per(A) for almost all (0-1) matrices A. For any positive constant ǫ > 0, and almost all (0-1) matrices the algorithm runs in time O(nω), i.e., almost linear in the size of the matrix, where ω = ω(n) is any function satisfying ω(n) → ∞ as n → ∞. This improves the previous bound of O(nω) for such matrices. The estimator can also be used to estimate the size of a backtrack tree.
منابع مشابه
Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملExtracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method
In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...
متن کاملIntegrating Differential Evolution Algorithm with Modified Hybrid GA for Solving Nonlinear Optimal Control Problems
‎Here‎, ‎we give a two phases algorithm based on integrating differential evolution (DE) algorithm with modified hybrid genetic algorithm (MHGA) for solving the associated nonlinear programming problem of a nonlinear optimal control problem‎. ‎In the first phase‎, ‎DE starts with a completely random initial population where each individual‎, ‎or solution‎...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کامل